
QAI /QAAM 2011 Conference
“Proven Practices For Managing

and Testing IT Projects”

Defect Analysis: The Foundation of
Process Improvement

David E.Oddis

10th Annual Mid-Atlantic
Software Quality and Program

Management Conference

9/27/2011

1Defect Analysis: The Foundation of Process
Improvement



Defect Analysis: The Foundation of Process
Improvement

2Defect Analysis: The Foundation of Process
Improvement

David Oddis
Swathi Gabbita



Introduction

Case Method Analysis
How we performed defect analysis to indentify

focus areas for process improvement.

Defect Analysis: The Foundation of Process
Improvement 3



Background
Background information
• Project background
• Intro to the problem
– Quality issues

Goals of the presentation
• Walk through of a real world defect analysis technique
• Provide the audience with a repeatable, proven process and

template to take back to their organization

It’s OUR workshop – please participate and share your
lessons learned, challenges, approaches, & ideas.

4Defect Analysis: The Foundation of Process
Improvement



Agenda
• Goals & Objectives
• Approach
• Scope & Team
• Ground Rules for Analysis
• Clusters, Mitigation Strategies
• Findings
– Rollup by Category
– Breakdown in Implementation Categories
– Rollup by Issue

• Top Areas of Focus
• Some Inferences
• Themes of Opportunities
• Recommendations

Defect Analysis: The Foundation of Process
Improvement 5



Goals & Objectives
Goal
• Identify areas and earliest opportunities to enable the development of high

quality software, as a collaborative effort between Development and QA
teams

Objectives
• Analyze, Retrospectively, the actual data gathered on {n}project
• Identify the top {n} areas for improvement
• Recommend action plans

6Defect Analysis: The Foundation of Process
Improvement



Approach

Gather Data Analyze  &
Classify

Identify Top
Areas of Focus

Recommendation

 Refine the Common pitfalls with more insight from analysis
Pilot the approach with a small sample
 Validate the insights
 Improve and repeat on rest of the areas

Refine the Common pitfalls with more insight from analysis
Pilot the approach with a small sample
 Validate the insights
 Improve and repeat on the rest of the areas

7Defect Analysis: The Foundation of Process
Improvement



Scope & Team
Scope
• A fairly self contained data sample of a representative workload

under the challenges and constraints of {x} project
• 100 out of 1100 random defect tickets

Team
• Leaders – Contribute, Moderate and Recommend
• Working Team – Analyze and contribute to the recommendation
Development
Quality Assurance
Data Base Administrator
Architect

8Defect Analysis: The Foundation of Process
Improvement



Ground Rules for the Analysis

• Be open, bold and honest
• Do not defend
• Be objective
• Be open-minded
• Focus on the data and facts
• No opinions on behalf of others
• Emphasis on the issue, not on the party

9Defect Analysis: The Foundation of Process
Improvement



Testing

Implementation
Defect Analysis: The Foundation of Process

Improvement 10

Clusters (Common pitfalls)

Requirements
Design
Environment



Defect Analysis: The Foundation of Process
Improvement 11

Requirements (Common pitfalls & Mitigation)

Lack of
Clarity

• Formal review with Dev\QA

Missed

• Formal review with stakeholders
• QA to validate against locked down scope

New\Late

• Adoption of a CCB process
• More analysis on the impact of change

See appendix for full template



Defect Analysis: The Foundation of Process
Improvement 12

Design (Common pitfalls & Mitigation)

Poor Design

• Formal design reviews
• Include right level of expertise

Lots of
unknowns

• Factor the coverage for non functional reqs
• Gather & socialize the non functional reqs

NFR’s not
considered

• Adoption of a CCB process
• More analysis on the impact of change

See appendix for full template



Defect Analysis: The Foundation of Process
Improvement 13

Implementation (Common pitfalls & Mitigation)

Poor choices

• Mandate code review before accepted
into QA

Incomplete

• Exclude from releasing the component to QA
• Release notes should include what's in\out

Unit Testing

• Formally track unit testing activities
• Leverage QA artifacts\resources to improve rigor

See appendix for full template



Defect Analysis: The Foundation of Process
Improvement 14

Testing (Common pitfalls & Mitigation)

Test cases not
adequate

• Formal test case review with all stakeholders

Test data bed

• Asses the specific need as applicable to the
component

Gaps in scope
of build

• Clearly define and communicate the scope of the
build at planning time as well and code hand off time

See appendix for full template



Defect Analysis: The Foundation of Process
Improvement 15

Environment(Common pitfalls & Mitigation)

Deploy wrong
components

• Active participation from all liaisons
• Formal BOM review

Incomplete
deployment

• Adherence to CM build of material
• Formal BOM review

Dependent
components

• Communicate dependency on external
components\builds

See appendix for full template



Issues falling into multiple areas is counted into each of them

Defect Analysis: The Foundation of Process
Improvement

7
6

58

2
7

1

Findings – Rollup by Category

Requirements

Design

Implementation

Testing

Environment

Misc

16



2

24

68

20

5 3

Breakdown of issues in
implementation

Gaps in functional
understanding
Poor/Sub-optimal
implementation choices
Incomplete
implementation
Omission /Overlooking

Unit testing not adequate

Implementation does not
support desired variability
Gaps in behavior of
underlying components

Items listed under unit testing are also factored into other categories.  Number represents the issues
that could be detected even with minimal validation (hard to miss)

17Defect Analysis: The Foundation of Process
Improvement



0

5

10

15

20

Requirements

Design

Implementation

Testing

Environment

Misc

Rollup by Issue

18Defect Analysis: The Foundation of Process
Improvement



Top Areas of Focus
• Poor/Sub-optimal Implementation Choices
• Unit Testing is not adequate
• Omission/Overlooking during implementation
• Incomplete Implementation
• Unknowns with the design options
• Lack of clarity in requirements
• Gaps in the behavior of the underlying component

19Defect Analysis: The Foundation of Process
Improvement



Some Inferences

20Defect Analysis: The Foundation of Process
Improvement

Requirements not locked down in time
Requirement changes/clarifications are trickling quite late (from business reviews, deduction of rules..)
Negotiations on complex requirements lasted long

Missed opportunities in the Implementation approach
Insufficient due diligence on the design features with respect to the unknowns supporting the complex

presentation requirements
Implementation with unknowns in design, is explored on the actual deliverable
Developer level involvement during prototypes to capitalize on the leanings? (security, Customization…)

Code base is open, for the sample being analyzed, from 4/1 through 6/20
Features were implemented across builds thereby keeping the code active (Security filters later…)
Far too long into the cycle, team tried to accommodate functionality that doesn’t quite fit in
Fluidity in requirements

Gaps in Planning, Communication and Management
Lack of formal quality controls  and tracking it from upstream (reviews, checkpoints..)
Incomplete implementations suggests plans were overly aggressive (at the least in the beginning)
Lack of build readiness checks on pre-scheduled builds
Incompleteness of build/implementation is not communicated well
Alignment of deliverable across tracks wasn’t adequate



Themes of Opportunities

• More emphasis on planning. Specific areas of focus include
• The Fluidity of the requirements
• Unknowns with the design option
• Cost/Benefit of frequency of the builds
• Strengths and weakness of the members
• Ramp-up of resources on projects
• Due Diligence on continued alignment across tracks

• Incorporation of quality gates into the SDLC. Specifically,
• Requirements lock down, review
• High and Low level designs, reviews
• Code reviews
• Rigor in unit testing

21Defect Analysis: The Foundation of Process
Improvement



Themes of Opportunities

• Increased collaboration
• QA to assist DEV on unit testing resources/efforts earlier in the life

cycle
• QA assistance in validation of requirements against scope, clarity,

conflicts etc…
• Communication on the actual state of builds (cross tracks and

disciplines)
• Timely and effective negotiations with business/business partners on

the functional details

• Accountability and Recognition for maintaining high quality levels
• Establish clear sense of ownership and accountability

Defect Analysis: The Foundation of Process
Improvement 22



Recommendations
Based off the quantitative data from the analysis and general inferences drawn, the following
recommendations are being made

Planning & Management
•More rigorous program level plan that reflects and actively tracks, at the required level of details, the
build & rollout dependencies across tracks

•Incorporation of quality gates into the plan and enforcing them with rigor

•Identify & plan the environment/ data/other component needs, at the planning stages (in contrast to
the trade offs)

•Leverage QA artifacts, resources to improve the quality of developer testing

•Assess the readiness of the build itself based on the state of the component. If it's vital to continue
with an incomplete component, release/build notes should include a clear articulation of what's in
and out

•Factor in and provide the feedback on the quality levels, delivered by an individual, during project
close out, performance reviews and/or at the right time as appropriate

•More emphasis on the build/release notes and effectively using them in readiness assessments
23Defect Analysis: The Foundation of Process

Improvement



Recommendations
Based off the quantitative data from the analysis and general inferences drawn, the
following recommendations are being made

Design

•Identify the unknowns part of the design process. Negotiate the requirement
as early as possible, in light of these unknowns, with the stakeholder  before
continuing

•Prototype/Pilot the unknowns before locking the design. Active developer
participation in prototypes to capitalize learning.

•Identify and engage the specialists (internal or external) at the right stage

•Make high & low level design mandatory. Inclusion of parties with
right/required level of expertise (HLD-> Subsystem level to be performed by
team lead; LLD -> Component level by developer)

•Formal design review and a sign off before the implementation (Tech
Lead/Architect)

24Defect Analysis: The Foundation of Process
Improvement



Recommendations
Based off the quantitative data from the analysis and general inferences drawn, the
following recommendations are being made

Implementation
• Formal low level design and review of the same prior to implementation. Low level design
should cover enough to depict implementation logic, use of common
components/practices,  coverage for the features/functions

•Mandatory code review before component is released for QA. Wherever possible, adoption
of tools to expand the coverage of the code base

•Define and establish a common understanding of the unit testing coverage prior to
implementation

•Formally track the unit testing activities, results. Leverage the results in the readiness of
follow on activities

•More meaningful notes when resolving a ticket (Most commonly observed note is “Fixed”)

25Defect Analysis: The Foundation of Process
Improvement



Recommendations
Based off the quantitative data from the analysis and general inferences drawn,  the
following recommendations are being made

Requirements
• Formal review of requirements Dev/QA, where these can be identified and addressed

Quality  Assurance
•QA to validate requirements against the locked down scope, for gaps and lack of clarity
•QA to be involved earlier in the requirement process

Build, Environment & Misc
•Release Manager to analyze the dependencies and assess the readiness of a deployment
•Quick shakeout of the deployment before carrying out the normal business

26Defect Analysis: The Foundation of Process
Improvement



Q & A Time

Defect Analysis: The Foundation of Process
Improvement 27



Appendix

Defect Analysis: The Foundation of Process
Improvement 28



Clusters (Common pitfalls)
Category Issue Mitigation Strategies

Requirements Lack of clarity in the
Requirement

Formal review of requirements Dev/QA, where these can be
identified and addressed

Missed Requirement Formal review with stakeholders

QA to validate requirements against the locked down scope

Conflicting Requirements Formal review of requirements Dev/QA, where these can be
identified and addressed

QA to validate requirements against the locked down scope
Change in the requirement not
reflected

Adoption on change request process for every change past the
baseline

QA to validate requirements against the locked down scope

New/Late requirements Adoption of CCB process within the track as well

More emphasis on the upfront analysis of the change before
making a decision on the CR

29Defect Analysis: The Foundation of Process
Improvement



Clusters (Common pitfalls)
Category Issue Mitigation Strategies

Design Inadequate/Poor
design

Make high & low level design mandatory. Inclusion of parties
with right/required level of expertise

Formal design review and a sign off before the implementation

Non functional
requirements are
not taken into
consideration

Gather and socialize the non functional requirements

Factor and validate the coverage for non functional in design

Design option has
lot of unknowns

Identify the unknowns as part of the design process. Negotiate
the requirement, in light of these unknowns, with the
stakeholder

Prototype the unknowns before locking the design

Incorporate the specialists (internal or external) at the right step

30Defect Analysis: The Foundation of Process
Improvement



Clusters (Common pitfalls)
Category Issue Mitigation Strategies

Implementation Gaps in functional
understanding

Ramp up sessions on critical components - Ex: Data Models, Framework Models, Overall
view of the system, demo of the prototypes as applicable

Additional ramp up time for new resources

Poor/sub-optimal
implementation choices

Formal low level design and review of the same prior to implementation. Low level design
should cover enough to depict implementation logic, use of common
components/practices, coverage for the features/functions

Mandatory code review before component is released for QA. Wherever possible,
adoption of tools to expand the coverage of the code base

Factor in and provide the feedback on the quality levels, delivered by an individual, during
project close out, performance reviews and/or at the right time as appropriate

Incomplete
implementation

Exclude from releasing the component to subsequent steps. Assess the readiness of the
build itself based on the functionality avaliable

If it's vital to continue with an incomplete component, release/build notes should include
a clear articulation of what's in and out

Project Managers to (re)assess the appropriateness of the scheduled builds (more so if
they are aggressive like daily or 2-3 builds a week)

Omission/Overlooking Mandatory code review before component is released for QA. Wherever possible,
adoption of tools to expand the coverage of the code base 31Defect Analysis: The Foundation of Process

Improvement



Defect Analysis: The Foundation of Process
Improvement

Category Issue Mitigation Strategies
Implementation Unit testing is not

adequate
Identify, plan the environment, data, external component needs at the
planning stages

Define and establish a common understanding of the unit testing coverage
prior to implementation.

Formally track the unit testing activities, results. Leverage the results in the
readiness of follow on activities

Leverage QA artifacts, resources to improve the rigor. Or tag dev/qa
members to test others code

Implementation doesn’t
support desired
variability

Formal design review and a sign off before the implementation

Mandatory code review before component is released for QA. Wherever
possible, adoption of tools to expand the coverage of the code base

Ripple effect of a change Assess the implications of the CR

Define and establish a common understanding of the unit testing coverage
prior to implementation.

Gaps in behavior of the
underlying components

Prototype the unknowns before locking the design

Incorporate the specialists (internal or external) at the right step

Clusters (Common pitfalls)

32



Clusters (Common pitfalls)
Category Issue Mitigation Strategies

Testing Gaps in the understanding of
scope of test build

Project Manager and or Dev lead to clearly define and communicate the scope of the
build at the planning time as well as at hand off time

Test bed doesn’t comply with
expected

Test plan to the details of the test environment, with specific references to the system

Assess in light of the insight from design

Assess the specific needs as applicable to the component

Gaps in functional understanding Ramp up sessions on critical components - Ex: Data Models, Framework Models,
Overall view of the system, demo of the prototypes as applicable

Active QA participation in requirements review (JAD Sessions)
Test condition is beyond the
reasonable stretch

Review the test cases, prior to the actual QA, with RA and developers to identify and
resolve these ahead of time

Test scenarios are not adequate
Test plan to define the specific bounds of the of testing across various QA tracks
(system, integrated, operational….) to identify any gaps or overlaps

Test plan review with all appropriate stakeholders same time to get a feel for
comprehensive view (business operations, system operations, business users?..)

Redundancy Test case reviews - Identify and address redundancy in the test cases

QA lead/manager to take lead on analyzing the gaps/overlaps before the actual
commencement of QA activities and address them ahead of time

Develop a tool/artifact to a comprehensive view of the QA coverage across tracks33Defect Analysis: The Foundation of Process
Improvement



Clusters (Common pitfalls)
Category Issue Mitigation Strategies

Environment Dependent components are not in
the expected conditions

Make high & low level design mandatory. Inclusion of parties
with right/required level of expertise

Release Notes to call out the dependencies on external
components/builds

Release Manager to analyze the dependencies and assess the
readiness of a deployment

Quick shakeout of the deployment before carrying out the
normal business

Deployment of wrong components Review of deployment BOM (build of material)

Active participation and communications of the liaisons

Incomplete/Inaccurate deployment Adherence to the deployment BOM

Training for the new members; or new members to be
shadowed by seasoned players

34Defect Analysis: The Foundation of Process
Improvement



Clusters (Common pitfalls)

Category Issue Mitigation Strategies

Misc Build related issue Clear documentation of build process, review it with CM
team and handle the build with a primary designated party
(or a planned backup)

Component releases are not
properly aligned

More rigorous program level plan that actively reflects and
tracks the build out and rollout dependencies across tracks at
the required level of details

Integrated build schedule to be managed at the program
level

35Defect Analysis: The Foundation of Process
Improvement


	Slide33
	Defect Analysis: The Foundation of Process Improvement  
	Introduction
	Background
	Agenda
	Goals & Objectives
	    Approach
	Scope & Team
	Ground Rules for the Analysis
	Slide36
	Slide38
	Slide39
	Slide40
	Slide48
	Slide49
	Slide1
	Slide2
	Slide3
	Top Areas of Focus
	Some Inferences  
	Themes of Opportunities
	Themes of Opportunities
	Recommendations
	Recommendations
	Recommendations
	Recommendations
	Q & A Time
	Appendix
	Clusters (Common pitfalls)
	Clusters (Common pitfalls)
	Clusters (Common pitfalls)
	Slide44
	Clusters (Common pitfalls)
	Clusters (Common pitfalls)
	Clusters (Common pitfalls)

